Aufregerthemen Schliessen

РУССКИЙ КОРАБЛЬ, ИДИ НАХУЙ!

Sagittarius A*: Erstes Bild vom supermassiven Schwarzen Loch in unserer Milchstraße

Es ist das erste Bild des super massereichen Schwarzen Lochs im Zentrum unserer Milchstraße: Das Team vom Event Horizon Telescope zeigt Sagittarius A*, das über vier Milionen Sonnenmassen schwer ist.
Bild von Sagittarius A* ist aus hunderten Bildern zusammengesetzt

Die jetzt veröffentlichte Aufnahme ist die Zusammenführung von hunderten Bildern, die durch die Beobachtungskampagne entstanden sind. Die wichtigsten davon zeigen den Ring des Gases, das das schwarze Loch in der Mitte umkreist. Nur die hellen Stellen auf diesen Ringen liegen an jeweils etwas anderen Stellen, was durch minimale Unterschiede bei der Datenauswahl und Analyse entstanden sei, hieß es bei der Pressekonferenz.

In weiteren Analysen soll nun erforscht werden, welche Magnetfelder im Umfeld des Schwarzen Lochs wirken und ob es sogenannte Jets gibt, also Ströme, in denen Materie aus dem Umfeld des Lochs in die Tiefen des Alls geschleudert wird. Zudem erhoffen sich die Forschenden Hinweise auf die Grenzen der Einsteinschen Relativitätstheorie, die die Existenz der Schwarzen Löcher und ihre physikalischen Eigenschaften vorausgesagt hat. Bislang sieht es allerdings so aus, als habe Einstein praktisch keinerlei Fehler gemacht. Bereits bei M87* stellten die Forschenden fest, dass Einsteins Voraussagen zu 100 Prozent eingetroffen waren.

Schwarze Löcher haben Pole und einen Äquator

Schwarze Löcher sind nahezu unendlich dichte, gewaltige Ansammlungen von Materie. Ihre extreme Dichte führt zu einer extremen Schwerkraft. Dadurch entsteht ein sogenannter Ereignishorizont, also eine Art unsichtbare Grenze im Weltraum, die sich am besten vergleichen lässt mit der Kante eines Wasserfalls. Alle Energie und Materie, die hinter den Ereignishorizont fällt, kann dem Schwarzen Loch nie wieder entkommen. Die Beschleunigung beim Fall in Richtung Zentrum des Lochs wird größer als die Lichtgeschwindigkeit, weshalb auch Licht nicht mehr entkommen kann. Das sorgt für die namensgebende Schwärze des Lochs und dafür, dass die physikalischen Gesetze, die hinter dem Ereignishorizont gelten, praktisch unbekannt sind.

Allerdings können nach der von Albert Einstein aufgestellten Relativitätstheorie einige Eigenschaften des Schwarzen Lochs bestimmt werden, vor allem über die Wirkung auf seine Umgebung. So lässt sich einerseits seine Masse bestimmen und andererseits sein Drehimpuls, der sogenannte Spin. Wie Sterne und Planeten haben auch Schwarze Löcher senkrechte Achsen, um die sie sich drehen. Materie, die in den Schwerkraftbereich des Lochs gerät, sammelt sich in einer sogenannten Akkretionsscheibe, die oberhalb des Äquators kreist. Nicht alles umkreisende Material fällt schließlich auch hinein. Ein Teil wird durch die enormen Beschleunigungskräfte im Umfeld des Lochs schließlich wieder fortgeschleudert und zwar in sogenannten Jets, also gewaltigen Strömen von Materie, die über den Polen entstehen.

Ähnliche Shots
Die meist populären Shots dieser Woche